Week 4

Position 2

Is

1

Plotting an EP

We need to know:

- Departure Point
- Water track (i.e. Course steered corrected for leeway)
- Distance sailed through the water
- Set and drift of the tide
for the period concerned

1 AXE YACHT CLUB

3

Example

Taken from a yacht's log:

Time	Log	Co	Wind	L/way	Note
2230	15.4	111 T	NW3	-	Christopher Point Light bears 161 T distance 3.5 nm by radar.
2330	19.9	111 T	NW3	-	Visibility poor in mist - GPS and Radar U/S. Tide $2230-2330$ 046
T					
$/ 1.2 \mathrm{kn}$					

Estimate the yacht's position at 2330.

AXE YACHT CLUB

5

PLOTTING SYMBOLS

LEEWAY

Water Track $=$ Heading + or - LEEWAY

7

Fix by Transferred Position Line

The running fix

9

Information required

- Bearing to a fixed point, time bearing taken and log reading.
- A second bearing to the fixed point taken after a suitable time interval. Ideally, this bearing should be 40 to 50 degrees different from the first bearing.
- The time of taking this second bearing and the log reading at that time are recorded.
- The course steered between taking the two bearings.
- The tidal set and drift for the period between taking the two bearings.

10

Process

- Lay off a position line on the first bearing of the fixed object.
- From any point on this line, construct an EP using the water track, distance run and tidal information.
- Transfer the first bearing to give a transferred position line through this EP.
- Lay off the second bearing of the fixed object.
- The intersection of this second line with the transferred position line gives the "fix" at the time the second bearing was taken.

11

Running Fix Example

Taken from a yacht's log

Time	Log	Course	Wind	L/W	Notes
0910	36.6	044T	W3	0	Steven's Rk Lt bears 088T
1010	41.1	044T	W2	0	Steven's Rk Lt now bears 214T

Tidal stream 0910 to 1010 - 094T / 1.2kn

Find the yacht's position at 1010.

12

13

Break

I

Fixing Position by Rising and Dipping Distances

15

The Lighthouse

From the chart we can get:

Position of light
Height of light above MHWS

Characteristic of light

The Geometry 1

Distance to the horizon is a
function of the height of the observer's eye above sea level

I

17

The Geometry 2

Rising and Dipping Tables

19

Obtaining a fix (rising)

- Identify light on chart
- You will be able to see the loom of the light above the horizon.
- Note the time at which the light itself becomes visible.
- Take a bearing of the light.
- Note the log reading.

20

Finding the Distance Off

- Adjust the height of the light for the height of tide.
- Enter the table at the height of the light.
- Move across to the relevant height of eye column.
- Read "distance off".

21

Example

Height of eye $=$ 3 m

Corrected height of light $=36 \mathrm{~m}$

Distance off $=$?
16.1 nm

AXE YACHT CLUB

22

Plotting

[
23

Bearing Grids

25

